HSE Researchers Develop Python Library for Analysing Eye Movements
A research team at HSE University has developed EyeFeatures, a Python library for analysing and modelling eye movement data. This tool is designed to simplify the work of scientists and developers by enabling them to efficiently process complex data and create predictive models.
The project was implemented as part of the Strategic Project 'Human-Centred AI' (Priority 2030).
Modern research increasingly leverages machine learning and artificial intelligence to analyse vast amounts of eye movement data. However, despite significant advancements in this field, certain challenges continue to limit the effectiveness of these methods. One such challenge is the limited flexibility of existing software solutions, which often offer a narrow range of parameter settings, making it difficult to customize them for specific research tasks. Additionally, the integration of these tools with other specialised software remains a significant limitation.
The Python library EyeFeatures, developed by the Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, addresses these challenges by providing a versatile and user-friendly toolkit for working with eye movement data. It includes modules for processing and analysing data collected from eye trackers, devices that monitor eye movement during the performance of various tasks.
Processing eye movement data is a complex task that involves several stages. Since the eyes do not move smoothly but rather in a series of rapid, jerky motions, focusing on specific points, the first stage of data processing is identifying areas of fixation. In the second stage, metrics such as the average gaze fixation duration and the average distance between points are calculated, enabling the creation of initial, simple predictive or diagnostic models.
All stages of data processing can be carried out using the various modules of the EyeFeatures library. The flexible, modular approach makes it easy to integrate eye movement data processing into existing research and commercial projects, from raw data to a fully developed predictive or explanatory model. For example, using the library in marketing research allows for the evaluation of consumer reactions to advertisements. Eye movement analysis will reveal which elements capture the most attention from the audience.
According to Anton Surkov, Project Head, Junior Research Fellow at Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, 'The library can be valuable to researchers, as it enables them not simply to replicate existing functionality from other software but to implement new algorithms and create more advanced models for research in fields such as marketing, cognitive process diagnostics, user interface and neural interface development (where control and interaction with the program occur through eye movement), as well as combine components in innovative ways to achieve new results and enhance methodology.'
This solution streamlines data analysis and accelerates the creation of predictive models, which is particularly beneficial in medical diagnostics, marketing, and the study of cognitive processes. The library has already been applied in research conducted as part of the Strategic Project 'Human-Centred AI' and was presented at the ECEM 2024 international conference in Ireland.
See also:
Mortgage and Demography: HSE Scientists Reveal How Mortgage Debt Shapes Family Priorities
Having a mortgage increases the likelihood that a Russian family will plan to have a child within the next three years by 39 percentage points. This is the conclusion of a study by Prof. Elena Vakulenko and doctoral student Rufina Evgrafova from the HSE Faculty of Economic Sciences. The authors emphasise that this effect is most pronounced among women, people under 36, and those without children. The study findings have been published in Voprosy Ekonomiki.
Scientists Discover How Correlated Disorder Boosts Superconductivity
Superconductivity is a unique state of matter in which electric current flows without any energy loss. In materials with defects, it typically emerges at very low temperatures and develops in several stages. An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling. The study has been published in Physical Review B.
Scientists Develop New Method to Detect Motor Disorders Using 3D Objects
Researchers at HSE University have developed a new methodological approach to studying motor planning and execution. By using 3D-printed objects and an infrared tracking system, they demonstrated that the brain initiates the planning process even before movement begins. This approach may eventually aid in the assessment and treatment of patients with neurodegenerative diseases such as Parkinson’s. The paper has been published in Frontiers in Human Neuroscience.
Civic Identity Helps Russians Maintain Mental Health During Sanctions
Researchers at HSE University have found that identifying with one’s country can support psychological coping during difficult times, particularly when individuals reframe the situation or draw on spiritual and cultural values. Reframing in particular can help alleviate symptoms of depression. The study has been published in Journal of Community Psychology.
HSE Students Win International Olympiad in Artificial Intelligence
In the finals of the olympiad, the Russian team competed with 300 talented schoolchildren from 61 countries, including Australia, Brazil, Hungary, China, Mexico, the United Arab Emirates, Poland, Serbia, Singapore, the USA, Sweden, and Japan. The finals included team and individual rounds. In the team round, the Russian team made it into the top 10, winning a silver medal. In the individual competition, Russian schoolchildren won six gold medals, one silver, and one bronze.
‘Neural Networks Can Provide Assessments As Accurate As Humans’
Voice assistants have become part of everyday life. They can plan routes, play music and films, and answer questions. But the quality of their speech requires assessment. To address this, students of the Applied Artificial Intelligence Workshop at the HSE University and VK Engineering and Mathematics Schoolhave developed neural networks capable of evaluating speech synthesis.
HSE University–St Petersburg Holds Summer Intensive Course on Finance for Students from Five Countries
The International Summer School at HSE University–St Petersburg included the intensive course 'New Economic Drivers for Company.' International students explored the realm of applied finance through case studies of Russian companies.
Scientists Clarify How the Brain Memorises and Recalls Information
An international team, including scientists from HSE University, has demonstrated for the first time that the anterior and posterior portions of the human hippocampus have distinct roles in associative memory. Using stereo-EEG recordings, the researchers found that the rostral (anterior) portion of the human hippocampus is activated during encoding and object recognition, while the caudal (posterior) portion is involved in associative recall, restoring connections between the object and its context. These findings contribute to our understanding of the structure of human memory and may inform clinical practice. A paper with the study findings has been published in Frontiers in Human Neuroscience.
Researchers Examine Student Care Culture in Small Russian Universities
Researchers from the HSE Institute of Education conducted a sociological study at four small, non-selective universities and revealed, based on 135 interviews, the dual nature of student care at such institutions: a combination of genuine support with continuous supervision, reminiscent of parental care. This study offers the first in-depth look at how formal and informal student care practices are intertwined in the post-Soviet educational context. The study has been published in the British Journal of Sociology of Education.
AI Can Predict Student Academic Performance Based on Social Media Subscriptions
A team of Russian researchers, including scientists from HSE University, used AI to analyse 4,500 students’ subscriptions to VK social media communities. The study found that algorithms can accurately identify both high-performing students and those struggling with their studies. The paper has been published in IEEE Access.