Сбер и центры ИИ расширяют партнерство для разработки передовых решений
Сбер провел R&D-день (Research and Development) по результатам сотрудничества с исследовательскими центрами в сфере искусственного интеллекта. Ученые из центров ИИ НИУ ВШЭ, Сколтеха, МФТИ и ИТМО представили исследования, полезные для развития экосистемы банка. На постерной сессии участники обсудили новые направления сотрудничества.
За 2021–2023 годы в интересах Сбербанка в трех центрах ИИ — НИУ ВШЭ, Сколтеха и МФТИ — выполнено 47 проектов, а также подготовлено 48 статей для журналов Q1 и конференций А*. В приветственном слове Максим Еременко, вице-президент ПАО «Сбербанк», отметил, что Сбер является крупнейшим индустриальным партнером центров искусственного интеллекта на базе НИУ ВШЭ, Сколтеха и МФТИ. «Спасибо исследовательским командам за увлеченность и яркие результаты, оцененные международным научным сообществом на конференциях уровня А и А*, — сказал Максим Еременко. — Также мы благодарим бизнес-блоки Сбербанка за четкие формулировки задач и умение слушать исследователей. Уже на данном этапе мы видим высокий прогнозируемый эффект от внедрения полученных результатов работы центров ИИ. Мы будем продолжать совместную работу с исследовательскими центрами с целью новых научных открытий и применения их для оптимизации банковских процессов».

Ученые представили подразделениям Сбера результаты исследований, которые могут быть интересны экосистеме банка. Вячеслав Мещанинов, сотрудник Центра искусственного интеллекта НИУ ВШЭ, младший научный сотрудник Центра глубинного обучения и байесовских методов ФКН НИУ ВШЭ, в докладе «Посмотрим в будущее: побьют ли диффузионные модели GPT-подобные в битве языкового моделирования?» рассказал о возможностях применения диффузионных моделей в различных сферах и отраслях, например для генерации текста и изображений.
Вячеслав Мещанинов отметил, что всем известные GPT-подобные модели уже несколько лет держат лидерство в области генерации последовательностей. «Однако у них есть несколько весомых недостатков, такие как большое время работы на инференсе, левосторонний контекст и механизм исправления ранее написанных слов, — подчеркнул исследователь. — В отличие от них, диффузионные модели генерируют весь текст целиком, постепенно его улучшая и заменяя неправильные слова на более подходящие к данному контексту. Также процесс генерации у диффузионных моделей может быть ускорен в сотни раз без потери качества. Диффузионные модели могут применяться для генерации последовательных данных разной природы. Мы выявили, что предлагаемый метод показывает хорошее качество на задаче генерации белков и значительно опережает другие методы».

Сбер активно внедряет решения, разработанные в рамках сотрудничества с центрами ИИ. На встрече были отмечены лучшие реализованные проекты, многие из которых уже работают в экосистеме банка. Среди лучших — проекты Центра искусственного интеллекта НИУ ВШЭ. Эти проекты охватывают различные области — от выявления мошеннических операций до риск-анализа.
«Работая с таким ключевым партнером, как Сбер, мы не только изучаем опыт компании и разбираем актуальные статьи, но и совместно создаем SOTA-подходы, — говорит Петр Паршаков, заведующий Международной лабораторией экономики нематериальных активов НИУ ВШЭ в Перми. — В свою очередь, сотрудничество индустрии и науки оказывается выгодно обеим сторонам: Сбер получает уникальные решения для своих задач, а наша команда смотрит на прикладные задачи глазами ученых и развивает свои компетенции в ML и NLP».
Ряд проектов Центра ИИ выполняется сотрудниками Центра стратегической аналитики и больших данных ИСИЭЗ, обратила внимание заместитель директора этого центра Марина Клубова. «Это подразделение развивает систему интеллектуального анализа больших данных iFORA и обеспечивает их непрерывный сбор, обработку и хранение, — рассказала она. — Представители команды iFORA рассказали о результатах проектов для Сбера и других своих разработках, включая обучение моделей суммаризации текстов и автоматизации сбора информации (извлечение из текстов утверждений и их классификация), мультиязычную модель для выявления и оценки научно-технологических трендов, определение перспективных технологий и рынков, репутационный анализ компаний и продуктов, разработку интерактивных веб-интерфейсов для семантического поиска, анализа и визуализации данных».
На постерной сессии участники ознакомились с компетенциями исследовательских центров. Ученые НИУ ВШЭ представили свои исследования в области биоинформатики, ESG (экология, социальное развитие и корпоративное управление), глубинного обучения и генеративных моделей, больших языковых моделей и обучения с подкреплением.
“Z-flipon variants reveal the many roles of Z-DNA and Z-RNA in health and disease” (Дмитрий Коновалов)
«Исследователи Центра ИИ ВШЭ реализовали с 2022 по 2023 год более 20 проектов в интересах Сбера. По оценкам заказчиков, они принесли эффекты: снижение операционных расходов на риск-анализ, сокращение time-to-market адаптации больших языковых моделей, прирост откликов клиентов, повышение качества продуктов речевой аналитики и собственных систем видеосвязи и др. Сейчас совместно со Сбером мы активно формируем портфель проектов на 2024 год». «Библиотека программных и аналитических средств (фреймворка), направленных на предсказание расположения геномных функциональных элементов методами глубинного обучения на основе омиксных данных молекулярной биологии» (Артем Войтецкий)
«Разработка алгоритмов для предсказания формы белков с заданной функцией» (Кирилл Алексеев)
“Cardiogenetics: from research to diagnostic panel + Progrnostic systems for cardiopatients” (Герман Ашниев)
«Суммаризация полилогов для формирования мемо-совещаний и встреч» (Михаил Захаров, Константин Вишневский, Марина Клубова)
«Методы работы со словарями языковых моделей (трансфер, полисемия, семантически ориентированная токенизация)» (Елизавета Жемчужина)
«Применение обучения с подкреплением в решении задач для рекомендательных систем» (Илья Левин, Сергей Самсонов, Евгений Фролов)
«Библиотека деперсонализации данных» и «Использование генеративных моделей для поиска аномалий» (Денис Деркач, Михаил Гущин)
«Природно-климатические риски. Оценка, стратегии и практики адаптации / Геоданные и геоаналитика для банковского сектора» (Татьяна Анискина, Николай Куричев, Александр Шелудков, Роберт Сандлерский)
«Диагностика синдрома эмоционального выгорания сотрудников на основе анализа рабочих коммуникаций с помощью языковых моделей» (Петр Паршаков, София Паклина)
“Application of Diffusion Models for Conditional Text Generation” (Вячеслав Мещанинов)
“Cell death pathways in tumor microenvironment based on analysis of sCell RNA-seq data” (Анастасия Михайлова, Артем Бурцев)
“Combined machine-learning model for prediction of delayed major adverse cardiac events based on clinical, imaging and biomarker data for patients with myocardial infarction” (Александр Кирдеев)
Роберт Сандлерский, заведующий Международной лабораторией ландшафтной экологии факультета географии и геоинформационных технологий НИУ ВШЭ
«Представленные на мероприятии работы факультета географии и геоинформационных технологий и Международной лаборатории ландшафтной экологии были в основном посвящены применению ИИ для прогноза возможностей адаптации природно-социальных систем к климатическим изменениям. Сбер объединил на своей площадке действительно впечатляющее количество направлений использования ИИ, в том числе те, о которых еще недавно трудно было бы даже подумать. Общение с коллегами-исследователями и практиками в предложенном формате было весьма полезным с точки зрения обмена опытом и идеями».
Алексей Масютин, руководитель Центра искусственного интеллекта НИУ ВШЭ
«Исследователи Центра ИИ ВШЭ реализовали с 2022 по 2023 год более 20 проектов в интересах Сбера. По оценкам заказчиков, они принесли эффекты: снижение операционных расходов на риск-анализ, сокращение time-to-market адаптации больших языковых моделей, прирост откликов клиентов, повышение качества продуктов речевой аналитики и собственных систем видеосвязи и др. Сейчас совместно со Сбером мы активно формируем портфель проектов на 2024 год».
Вам также может быть интересно:
Стартовала регистрация школьников на Всероссийскую олимпиаду по ИИ
Открылась регистрация на пятый сезон Всероссийской олимпиады по искусственному интеллекту. В этом году организаторы ожидают увеличения числа участников — соревнование получило международный статус, и теперь принять участие могут школьники 8–11-х классов не только из России, но и из других стран. Олимпиаде присвоен II уровень в перечне РСОШ — ее призеры и победители получат льготы при поступлении в вуз.
В НИУ ВШЭ обсудили глобальные тренды ИИ на международной форсайт-сессии
В Высшей школе экономики прошла международная форсайт-сессия по искусственному интеллекту (ИИ). Российские и иностранные ученые обсудили тренды и вызовы, которые возникают в связи с быстрым развитием ИИ.
Больше не одинокий гений: как сохранить идентичность ученого в эпоху ИИ
Сегодня профессия ученого требует новых навыков, зачастую не связанных с наукой — от умения находить гранты до успешной продажи продукта своего труда. Огромным вызовом стал ИИ, который справляется со многими задачами быстрее человека. Центр научной интеграции НИУ ВШЭ организовал вебинар «Ученые и искусственный интеллект», посвященный профессиональной идентичности исследователя в условиях стремительной цифровизации и технологических трансформаций. Подробнее — в материале HSE Daily.
Вышка доверит ИИ рутинную работу по созданию программ ДПО
НИУ ВШЭ совместно с EdTech-компанией CDO Global запускает AI-конструкторы для оптимизации разработки курсов дополнительного профессионального образования (ДПО). Новый сервис позволит автоматизировать подготовку учебных материалов и оценочных средств, значительно сократив время и ресурсы, затрачиваемые преподавателями и методистами.
ВШЭ и Московский аналитический центр объединят усилия в сфере ИИ
НИУ ВШЭ подписал соглашение о сотрудничестве с ГБУ «Московский аналитический центр». Документ закрепил намерение сторон развивать совместные исследования и внедрять технологии искусственного интеллекта в управление городским хозяйством.
Руководители «Билайна» прокачивают навыки работы с ИИ на базе НИУ ВШЭ
В Центре непрерывного образования факультета компьютерных наук НИУ ВШЭ стартовала программа повышения квалификации для руководителей компании «Вымпелком» «Лаборатория ИИ: Вместе быстрее». В ее работе примут участие сотрудники компании из разных городов страны, которые будут повышать компетенции по внедрению ИИ в бизнес-процессы.
Вузы разделились на шесть лагерей в отношении к искусственному интеллекту
Каким должно быть образование в эпоху ИИ? Чтобы разобраться, какие есть точки зрения и какие решения уже формируются, команда Института образования ВШЭ весной 2025 года провела серию интервью с проректорами российских университетов. Об итогах этого исследования рассказывает директор института Евгений Терентьев.
НИУ ВШЭ стал абсолютным лидером рейтинга вузов по подготовке кадров для ИИ
Альянс в сфере искусственного интеллекта опубликовал обновленный рейтинг вузов по качеству подготовки специалистов в области ИИ. В него вошли 203 российских университета из 68 регионов. Высшая школа экономики первой получила наивысшую категорию А++.
ВШЭ и МТС будут вместе бороться с дипфейками и научат искусственный интеллект создавать новое видео под запросы пользователей
НИУ ВШЭ и компания МТС Web Services (MWS) объявили о запуске серии совместных исследовательских работ в области технологий искусственного интеллекта, направленных на развитие инновационных решений в сфере кибербезопасности, мультимодальной генерации контента и анализа больших данных. Основным исполнителем проекта является Московский институт электроники и математики им. А.Н. Тихонова НИУ ВШЭ при общей координации Центра искусственного интеллекта ВШЭ.
11 вузов России стали участниками проекта ВШЭ и «Яндекса» по применению ИИ при подготовке дипломных работ
Эксперты «Яндекс Образования» и факультета компьютерных наук НИУ ВШЭ научили студентов и научных руководителей использовать нейросеть YandexGPT в трудоемких задачах — для анализа источников, структурирования информации, визуализации данных и работы с текстом в процессе подготовки дипломов.